table 3
Matthew Fluet
fluet@CS.Cornell.EDU
Wed, 14 Mar 2001 17:17:13 -0500 (EST)
This message is in MIME format. The first part should be readable text,
while the remaining parts are likely unreadable without MIME-aware tools.
Send mail to mime@docserver.cac.washington.edu for more info.
---559023410-2032315143-984608233=:1886
Content-Type: TEXT/PLAIN; charset=US-ASCII
Take a look at the tables with these new process*.sml files and let me
know what you think. I don't know if it's better than the previous
version.
> > should only justify within a subtable in table 3
> >
> > Can't quite do it. I can do three separate tables, each centered, but the
> > two larger tables won't be of the same size.
>
> To be clear, by "subtable" I meant one of the 11 per benchmark tables.
>
> I think what you're saying is fine. I just didn't like the way that
> count-graphs, vliw, and zern looked, since they were unfortunate enough to be
> stuck in the same columns as mlton and hamlet.
---559023410-2032315143-984608233=:1886
Content-Type: APPLICATION/octet-stream; name="01-icfp.add.tgz"
Content-Transfer-Encoding: BASE64
Content-ID: <Pine.SOL.3.95.1010314171713.1886L@hoho.cs.cornell.edu>
Content-Description:
H4sIAJLsrzoAA+xdbXfbNrLOV/NX4KhtKjm0IttJ3Dg3PUm96TbdpOlJsnfvOVFuFiIhiwlFcgnQ
L5G5v31nBgAJUpRtpd2+Ss1aJIABBoOZZ2ZAQjva3YmCaXY7y9NASPmNSILZUZqoaHp+9Dqai6O0
SJQcynl845M/o93R6N6dOzdG8Dm4d7fxPRrt7985uHdjdLB3d//g3p39O3s3RntAce8GG336kNf/
FFLxnLEb07gQ6pJ2V9X/Tj+eOs8EC2iV2UPWjxLFtu3XNf8OGje6x7xIoLvFNMqlOjT9+94Wg48U
QZqErUI1i/J2WaD18J0CPTxkueAxDIFftqNonsWXNQjSeRbFYmX982cqTVZTOzXViB+hAGZp7nOn
SaknPkELwqknHGqkyqPk2I+jRMhDpAO5yEMUThxJVXpemomEvRZn6ukL7wQ4mD5FuemCIVbCfS9K
skINFZ/EQvZ0sxeFarbDgl6gapNV4qzneXEa8NhjbApDGhv/tkigXZpI1h94OIuHLBbK28J+UQdo
tGfAMTKji9/0ppbosOez5C00e0VTG6r0g4CujmY8H0byVcYDwaSmwpnA94sp6z9N1HCap3NNxBI9
MIOxvK3EXIsk9Jqc6pmsweY7H2Ybv0PFeRemc9+5vx7LDfKV7DdaDVqUV1MNrjUJw78ZZQ32r+Tc
YfrKmTYneTnLhl34WovhS5l1GL2USdPusrlcZxq5QKG/ux7z0HjlYFB35WDvrj/UFZ1cq6Pa4vpN
KwEsqwqqG1vRamTL8NsU01RXmfAPQioRvhTvRQDf6yBOQpQEN3TlM425rJeb3rDOXl8Tkain1bBE
1QO7uobn1UusG7hY1re8tiuNZLDjBrgZcUwTEA17+LWWyxa1m0J5F2Sb6qCurnHS1PUTPx/U9cuL
oCWped5i/anPApAzsF1XLa/lt1ESydk6qxhfa1XeHR7Cv2Pjb/FaXyB1Lk5YrJthYb0YL8HluquB
tWblTE+r25oGjYXDAr9V4YiAh6Gdfp/a7trGuwOfCvZswd5gcNjHiGAb/1hRaaJbjZa7tyqSJc9H
oY8jcdYWuYmOdh0tcdbHbbJ3dZP97ia1fNz525H9jsI93/Y4WA0Kr0zgtqxQHTy0BUMh3SdQUrD3
CXSYBa2BW7jmtKY+xY2F1DEiXvjyXOobuHhLcHYd87BdrNZn28J6HDPMagLbYtCwrGqgW1UDRwOc
245IrSmlluiabV+ukChZxDJxVbd3Sd3+cl3LtndhVroX/b0/YLfZ/nDkTAm/24r6sYvTd91rv0ol
IBJXfsgV9ydS+qEI/Jk486egxpgjXF8RgHJ1cCMCu/rI80MscESAhZfO9CVcLohHhh5BpzFznn9g
XOpcxmeUxfiY2smyNDKJpixO0w98JnhokpdXL54/Yf3Pejs94EjNIL8hwRm3skJ+FaemmbsfQWz0
iQkgJF6AR+SSOMKVIc5MIfIHZc8gwRqi+yB+Dw9xcta7oQy2RCzFtVnTtW5G6rrfNlg3iBppak3V
BYLNserk1R1rCf9cojqjrUmWgM8loAS9M5JwZ0AZ+1WtKIXvatScVntClS03RPaxIamPSy3yVjcv
m90sa1Kl4GgbqOceKYuj6CZnb6jYVoeGbRkFW1jZ0bep26pkpS9ssRUOfdvCljq5t1V3LeVp3Nf9
NFTFvbVNGopR31Q9VLSt0T/qQT9WRZXg9QUYlsEDx7LoasaTMBZoUDaq3XJsLMtxxwijhoAriPZ1
vAxIdsh6dijmLgTc9cZJ7+3AdITYBciTUWiki66DR9iSMKll5FhOgNBvVDywY+hhKVzGoUzpA3O7
hFaoYVQH8mDo/0AYK1pVfEPTF1OAc8Hnmifis4Ix3eUngFaHW2JONbgniYL3tTO6yhFdq2Pql0xm
rQ6tsXW7OKpdw8BXm3bLb1iP8eZtQ42jpJmw1et2yIokUmzna9PtITP7fKZjvUWouz1k1W4f/bVx
fJXxLfX+5q1HARa5fD2fZW84aNSTkkzTOMyZx+pPHwfRzlvPlEyVQpGBzabrnFNnjlj5jJr8ldJJ
Ypb6z3iuIsxCqV9XoF/6w+GwxK7ojv0PfQ+sFegkk+6esUfsTWMtmkthVoL4fAttiQ+gBoHolQfh
4Bf1TBJIivk7Q9UnNiGqOlYzlrLPqDhls3DgtJ/zM1dgsdcpLpyPD01phVAP4boP//ONLhMw0iSJ
rZG3ZXlCXBJnGdo7Jvdk2S6RZF8/RCbMuGTjdm+GjNsQ9yX7f9ZjgFmeOAtERoJ/kudprueR5dA3
cqZS3b0emnDVut5q09YkZZEIfbNb85ClhQLT7eNOsq9h+E3vJmFvZVesJvP621VFr9/zsRY3y4BB
uNke1GRLnVRcvMWB21z+kAJ2OJy29qbcjSn0U3ZrytmXMsV677EqwnlWfJhdGXdT5qHLhDP+yB8N
lkR5hNuUvyEmG8Pfqu5u2ZHpQi91eya4kfp7mElVhMN0zeQv6fzaEzHK2D0dp7I5KVPhTu2nzczO
hy5wFJpXbc46TZ/DAmmTPjpRw2+f/h/cYgizN3AV85XiMNyiEUJCqtYPwJqPid+lULEdFzoxIVLO
lT8HSoJy8lp6dv0VQGGiLmAcxryFY5oSCw99Uw55NvR9C/pm22x3NBqOBn5vPP5iAMGcO6MfUj2n
QQucYDAItACAPBvrEHrzLIPU3nqi2oknACh+vZhBQE8jyLEDlvdt2NCCoP5nOppHagzrnEYVXw86
aBEZLC09r1iHFviraPEZxhq0oP2WFJ9rXEXZkOcYP0mvu5acWteIWkomvekQkx6yo8IVlCHvkJQm
76hwZWXJl4VlyJcrHHEZ6mV5aeJG+eUCWxKLTu8+TXk07acpj6H9FOXRpD+v8kDtDAM5bGDrq31g
ZgK0aRQrkXtbzDFeGz9SA3EGfyVV63jSBJY22qx3AlZ+3vTmcSzObCrJ4PacB0F9fxJHp/XdhOeA
7DuzQtVl9CrCznHOs5msSxWkMGle338UeVLf5fxc5ZDX1CWEsfXth8gZYcbnEHpTSsv07tT2bwjh
x+N5EasoSONinizulYvgolxcBvvjsZhns4XEvq/rAsraB4RppPoZZgCHNWeZBTkseqAVKassuVmo
FRrLtLug8qrrO6zPDykj9CfmOzDfof6+RBjj8UQcR8kiEAmobjk2K1qVKz4pYp6XpnhxEVxcbC/u
lIvtxX65yBb7o0yVjxa3S3NZXpTYFlya0xxa5tgmh5YgyzPUpBQyggzuwGZioGpXUF+/NuUFTgU0
FzOEpblXbUhoOlHYcmDirV3ALrE/Tnh8LiNjfitUcjwO0lCAZn5GGMH9XlmuQzBZlyBYlyCsCZjF
zxoqLxcFNEOvsih7tlbbSdMB+Ro4EzXr66yX+2w0WItisjZFsDZF6FKs8CpddY/ROV4iAvSjXSLY
XcleJ8VkbYpgbYrQpVhLBOAGLhMBxrodIthbzV4XxWRtimBtitClWEcEEKtcIgEIaroEcGclc10E
k3UJgnUJQpeg29dogGgBpb0XSVi5m1ax8U7kUrcdr/orur4a/pcmtEH+DfJvkH+D/Bvk/3mRv4L9
/ZWw/zPAfZ2zdIT5fyik/8MC9x8Ohv9woPqHgsj/CuKRDTafhf8qu42xODsWzj7fr7XdOI/X2W4k
sb3h/sQP/NAX/tQ/9md+5L/3P7w1b1F41UOXPqUSfdMaVrW/vdW5+cuaALt3FxC2XJQM15o5G8QP
aDdIZyh9M/indxtgm8Xuzu79stX5fp9mNOjquUW1TVuHdsZBnErxNKE3WxpleNYKe/B+7dN7P/0z
uuL8J77a8xOPf15x/nNvb3Swb85/3j2AAmh/cA+qN+c/f4HP5vznz3f+879xmFPb3+Ys5+Ys5+Ys
5+Ys5+Ys5+Ys5+Ys5+Ys5+Ys5+Ys5+Ys5+Ys5+Ys5+YsZ02wOcu5Ocu5tTnLSeV/urOcm6Ocm6Oc
m6OcHeL6Ux/l3Oo4xbm16gDnFnOp3GObm0Obm0Obm0Obm0Obm0Obm0Obm0Obm0Obm0Obv9FDmz3f
gXZ7q3G8ek9uJRi3UqhrYnL3e33mbVrquFeasHKrEeXq8d5eA5F+l7r8O34l8M/y8tvmU73/B6mq
yAFyzC/H/8xjXPr+3+7B3kH1//+wO9qH9nf2727e//tFPmOIrxZP6sUvF44mlJ73WLJQyCCPJiJk
UcKwfS6mC0DqPA0LSptKH7duRJ4W0u5X5yzNwINFH7l+1YHnwhMJvvMWssk5boykkp70zwRusAHE
4bZYWOTmwUyexjvTOD1l6ZRx3DMDFJxDaxjjeIZUntnUCGgABj0kcprmc7odMvZUsUhiQ2A2zQVE
eYrJIgcXY8blivFWJxmXAPrgn6MYVEKlxB291cTNIZUBO+XUq3nWshgHGUjJnSu+XQCTBOrFmKC3
RLG9EpkS8wnIZff+/a+Av9fY9fLo6Hs9YA1mKgTLYkByifQ4pB7MClbkPjuN1AzFJ/ITkeC0XEY8
7FBIPZYUjXa6CoqCuAiJEbCCRKGgM35M5D6sOw930I97IoZeE1McJeBgaYc055EUOyrdeV/Ms9YS
+HpbvaEFPu6ce3IGbv4DJOhGe+S/x0GkxOJxlon4+2h+/6Acet7rFMafI185V4Lmn4FfUyCtOFLn
tAc/EYmYRuCoQUmwQZMDaqIXTkivocQQRUuQQUYyBMlAQCZQ4aGWs0Scdq2MWQS9povSs4oO8v2R
g9rGICSj0FkO8k6UJnZsptFriZJkp7MomAEPnhQZp5k2h4ZFSyvtoxm1xZwWObFMTOJCYujiodkk
NWE241Jopc/IbIXU9WAWjrDaEqzJrKUA3QTKQpa61CCDfwg24ydNWQoOczNr070QVjK2tjSWUfVi
4MN0Ymwx1NwkhWVdEyPI4O49j45nCiZxyvPQ9AeBK+pvmtciKZACgeSZSI55IfKd17AAids0Pk5z
sLC5UVDbENq958nB/RLDc7PWAp8xmHbPi2CWRMEHrcggmLngAD0ICnpqoMY4o+ZKwz+jUvRKg15s
gAM0NU+XTJEpMJxav0DgkqOssL/qGYnUwIB71DDPDLHo/t7fPAq3QSCPway0otYUPtMRuw5aS3ur
Y9ZSG64uwrC1NKKGUpAxc+z3/l75wNDWEW3pG1oduuruTCuMXnV3APccH17tZCk+TkS4AmU+Ec7Y
bkBcIr7PU6nicybP55M0joLheJqmCrRSLLzvC1jM7yFeZX/leRBx9jLKUtwQ1l2dgpI/4nnOP0Ry
CIoHyJ4DHWsy6v2Fn0Qhex4cxRzU1dCG8yDA+0f8IwYPiVBDWLpWFzQx38OZfieS/Jwdifeq7mOG
ZY8kWG8AwAEK29FFY7rD0kNN1jU2yi+dB2PGM3mnEekMAw2BUQ1svaZ9g8cJ2EzMnh59+yP7UfvU
OaoXbksIyHtq8b3GB5c/PjuKi4nXH+NLL0otZkplh7dvn56eDgOQWpGJJBkCjN8eQ20UA1+lLOZR
dBsjynLg6bng8GBHx2BVMTsRuSRtny7NBDh98eURJCRD75USGT5M+YcQoMwESjFHRIkUKvOr58+0
Cn2fzhL2UmTZuWfE+n6WP0LrgCWfDScijndiPpFGtnMOvm5a5BgVgOqElfFJyP0c6Rq3XYtWRxJ1
bAM+R8RTq+iQUZWmiff82c7fgMn+/5p57g+MdbxOp0o8UY/j+19VFqKzL0vLvuPPnwnlwey0rwYz
h7/OojxOwhyghL1MpYRQ4tjqUm7uH2WwKEm0IyfDUFTyb4wFEyVAdLECQiQ7tZCMTZyJoFAW5NlX
oxF7/t1HzN1FzH4EvYqKOXv69KmGmb2799jzb3BF5+Cw83Mdlng4o+ppl6wX3Ai3RgAUn185QpcX
iGE4O9jfv2z0u7t7jdER38DKnflh6MlPOMR0EH0y8IAd6tyyw9u0BYPoDQnwWPGJ9t7E1g69KUFx
AyBxmitaO4h/MbgDNvRDULjAdUTERi/oOa9gJdoPKPCdcQPy0QL0bqcJ2pZ6DVP4A6rg2cCNZ+DO
zyJw1wJgEBZqVI8PfhoUK44mOQccQFHrAMBGMOi6ptEZesHUI1dtwuwqOnVYQ3Cp3BisFZQXFEh/
TidPP9e+KY514NoRV9tA1MybzxHbyK9j9xKgBCG/5RP7ACdzcK0pwEbdu+lvoMdMztshhkbC8wxD
RZAKn6SFYnvjL6gdju65U9NIgiSJOCFcyElQCbsz/gI0AJf/Gzz6Dj6IzpwiYC4dho8vLnL6r/T0
BpRn8JXdNCtyszW3m5WAx+Nqf+pm65uZWOBmdQWNzQD2i17bWNSHhYAD99wsTeAJFFiGdFjAzY58
zZAucSOQvtHGQWkZbBpBwzxMqNJtHqZSLzYsA6lbZRN+ZfKeViqqbnOn4zZINTE8jWESoU3RGr0T
+DRpw0hS5gka+PekTgJjgCpFqRF4jCKGPELOIONEI/FJtzC6AG69dqjU7P08EnEIAkUlBmeYwSgv
tNNNydHgu1M+eq5Ieu0MtNkTAZrqDlcjMnwwglN+DjG4ULiDSWra0YeIaGRjF5oNax0Yq5P9nuI4
1CkF7jwBEJCUmsfc5nrQRhYwr0DpnCnSaUMOA5oglmD+JI0LZdx6nal6bqZK8B6ChcVphm4GEnlK
z+rQoCPnqlNx73P9GwSf61SDxzKFVQs0JlAoqihf0D6ea63D97Vg+dpJxiEiFrkc9DantDdAwbkh
65D+lJ+kuWyplV0/k4cA6CJ+tPO3+j0KDYBduUuEqgd+SmopTyIOWjYp1PIGROUC7BaHhwsYxBDw
MK28qM8Q2UxhbonePABNwcWqtEvrQ2PPQiPqAw+6QBCkhQc+8Xl5kRu/ARoM9lHEmHezDEKOCP0p
mCCpD3Vs1xtaYKEHuUOah6TtKSWqwEwRUdqCu0yBSe8aKPvFWIJ5x5eibXAB//C/DrS1v1WhL+lX
HuiSfh9hJXzmGtC6kRNfRzOI2AQf8zsfg7KJfq2wAR/eXRIwVPpRv6dDW2QYNthlh9X+1oQSLmzS
9pZOnlC6eXoKeoOv5ti4o9abvuHVAy9eD2VBA7yfBckBjPUESaE3agaJjg1/6VWkqm9t7J72ySs8
PvUEkVVsExE692oEIV1JVGKothpCROE4BpUkgXD2z3/e/vLLZmEdSXUJVI/p2e1DWupqX2+JYdx1
qqdZ+QLXFSxlzYaFmONPlBKkAeA0unZXKUntsCSFmtEQIv1Ai0b3CH3kgAcZuF80H0cPgMVzjX81
h60BUVjJueMyZ1xCJC2j44RaYahldiGSa0nQiQwfx2qGe7DeMopIvacnVup3XwyPh/UG4gBCr1rn
q1UCZhFaSeIzHk9Xdqf3uOC2MhvLpoMn0rN4IoXS7xMusFL/mGm5GA3vOreAPp0/c7T8c3bdLXW9
+9f7ouPh4C/Q7gI5XI4Q9asEWNeFdHLxw6WwBNrQEZqh7VQRIrOAR48ONMqjJa9wrPW2IsXd9aAU
2jTiGG8pjnlNQX8Ky4tPHnQQR7uKS/tPxtc3mKjAtY7grAqSq7xfc7PKGVtCr0F44BKa3N4wBzOx
2o8x3KkQ2r7MSy46N4zy0CMskUu7hOj1zfZ1wCXkLjb9qteIV6PrjVsbOAHA47suCu0vwG0E5AE3
z+lV1ok4T01iinv9CrdHK4AllkWOZiXxcdHzQhV0qDYo9C4HyFyHfI2nR4dVg9Ii6+pHNizSz45i
rK6HpjCzisygO4hqIP1tbA+jlMyzERsdYbJo3FcdngHwQ+QCMSWsBE8E6Ex87oUiAAuAAec0KcgX
DdcQqeJmwksbZFoWLplD9952g+KwSVHCaP8qIh35oRqohunB4i3YlI2xNzw2zMYPLsYPIJjpT/F9
u5iNy8/NtKp5NOdnYk5a0+Ze+koZoqMCfQZfhDwGaDpG5YA9r4oI6Ld4MteLwVjf2fhxAmIDFWqs
gOHRsAFuCFp59ow15UeNsDIUUzyLsLwurWUFTUn0sQcMfTw0wQgDa4ILGzid0S65rx+QhAAjpFwU
SNDzMGO/05wfo0wO/10FnbgnBFOawGjzkt7zmdLb/viqvf4pgw/sP+1cTU/DMAy951f0wAGkCamV
EDtz4H+0pJ0qtiHRFU777/g5TuJ+iO0A2sXv1DbpmtixHb8ku8fmcmwhgd7pdlfilAmfPMALfCsV
dhWu6SqUVKqkjCXBN08//PIhs/dZ+uAXXhUECE/TyS1TxIeLSAzurjzT55x+UuFJ4sTez3fsY0gp
teehEsdrXNyKIiIVXSEkhAUISsLDXF768bqUdIVVYRXFROi4h9zXZPitlggDlfw/PcAhjPVdQb/3
YwULYVzdVw54SsvMIIS/TBATUYOCmRESy2k8MpW4YYN30a6EfBjGjvxYH5QfT7gxL0eegR3L0lgd
m3EfHcTEGJFk8iJi+i3VpLDso9t/nBktU5pxOD5eUGUjusyqXNiuerwXTWZb1oVVLqxED9S4viua
cAaE3g5Huyq89pde4HWqIgnW2bHHMBhCvZ7xgwjtOpqMuTwdGdJa+NC+xXVcdADJZDdqGp1035/4
QB2IZ0i/3Lrae1ZsPeHb8eGQ39FQwyh8iLGdSf0lyeVyopJTJeZSynIDSjvPCvGF1uskCvku9e15
i+4zy+QOI2UOFBJltMNHcp3qKdWJ465p1czJj21MDutmAHuCZO4wm+xIlphrXI5QaXrE/FlBAqde
g50GQULRCAfM0EoxM+qurzky74Xt+mxT4GJzPFC8+sJV2mJy+nByRpOaTwnQrbcVGQwGg8FgMBgM
BoPBYDAYDAaDwWC4IX4ABjWf9wCgAAA=
---559023410-2032315143-984608233=:1886--